
International Journal of Solids and Structures 43 (2006) 4097–4115

www.elsevier.com/locate/ijsolstr
Influences of particle size and interface energy on the
stress concentration induced by the oblate spheroidal

particle and the void nucleation mechanism

Minsheng Huang, Zhenhuan Li *

Department of Mechanics, Huazhong University of Science and Technology, Wuhan 430074, PR China

Received 16 April 2005
Available online 6 June 2005
Abstract

Separation of the particle–matrix interface and breakage of the second-phase particle are two main void nucleation
mechanisms, which are directly associated with the stress concentration factors (SCFs) at the interface and within the
particle, respectively. This work investigates the coupled effects of particle size and particle shape on these stress con-
centrations by solving an infinite solid containing an oblate spheroidal particle under remote stress boundary condition.
The phenomenological strain plasticity theory by Fleck–Hutchinson [Fleck, N.A., Hutchinson, J.W., 1997. Strain gra-
dient plasticity. In: Hutchinson, J.W., Wu, T.Y. (Eds.), Advance in Applied Mechanics, vol. 33. Academic Press, New
York, pp. 295–361] is adopted to capture the size effect, various particle aspect ratios are considered to depict the par-
ticle shape effect and an interfacial energy concept is introduced to settle the double-traction equilibrium problem at the
matrix–particle interface. By using a Ritz procedure, solutions about the stress concentrations are numerically achieved
and three main results are found. First, the interfacial normal stress near the particle pole, the interfacial shear stress
and the particle opening stress are dramatically elevated and their distributions are significantly modified by decrease in
the particle size. Second, this particle size effect is influenced by the remote effective strain, remote stress triaxiality and
the interfacial energy to different extent. Finally, the particle shape effect is coupled with this particle size effect, and the
more oblate the particle is, the more significant the size effect on SCF elevation is. These findings are helpful for us to
understand deeply the void nucleation mechanism at the micron scale.
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1. Introduction

The embedment of the second phase elastic particle into the ductile metal matrix can greatly improve
their mechanical properties such as stiffness, tensile strength and creep resistance (McDanels et al.,
1985), but synchronously induce high stress concentrations both within the particle and at the particle–
matrix interface, which can trigger voids to nucleate by particle cracking (Fisher and Gurland, 1981; Lloyd,
1991; Brechet et al., 1991) or particle/matrix interface debonding (Keer et al., 1973; Needleman, 1987;
Manoharan and Lewandowski, 1990). Accurate determinations of SCFs within the particle and at the inter-
face are crucial to predict void nucleation provided that critical strengths of the particle and the interface
are known a priori.

During the last 30 years, many works have been performed to determine the stress distributions at the
interface and within the particle (Tuba, 1966; Huang, 1972; Orr and Brown, 1974; Thomson and Hancock,
1984; Wilner, 1988, 1995; Tvergaard, 1993, 1995), which presented substantial understandings to the clas-
sical size-independent damage mechanism in metal matrix composites (MMCs), but are insufficient to cap-
ture the size effect on the mesoscopic stress field around particles at microns or submicrons scale since the
matrix material was still modeled by the classic size-independent plasticity.

At the micron or submicron scale, wavelength of the inhomogeneous plastic deformation due to the
dimensional and microstructural constraints is usually the same order as the material characteristic length,
so the size effect on the material mechanical behavior is inherent (Arzt, 1998). In recent years, a series of
typical mesoscopic mechanical experiments have been carried out to investigate this size-dependent behav-
ior. Lloyd (1994) observed that the stiffness of SiC-reinforced aluminum is markedly increased with
decreasing the particle size at the fixed particle volume fraction. Barlow and co-workers (Barlow and
Liu, 1998; Shu and Barlow, 2000) further investigated the lattice rotation distribution around the tiny whis-
ker via the TEM technique and found that lattice rotation field was much smoother than that predicted by
the classical size-independent FEM, which was believed to be associated with the size effect. Many other
physical experiments, such as the micro-indentation (Ma and Clark, 1995; McElhaney et al., 1998; Abu
Al-Rub and Voyiadjis, 2004), the micro-twin (Fleck et al., 1994), the micro-bend (Stolken and Evans,
1998) and the thin film micro-necking (Huang and Spaepen, 2000; Espinosa et al., 2003, 2004), and numer-
ous discrete dislocation simulations (Cleveringa et al., 1997, 1999a,b; Shu et al., 2001; Bittencourt et al.,
2003; Deshpande et al., 2003; Shi et al., 2003) also confirm that the size effect inevitably emerges at the
micron or submicron scale. The conventional plasticity theories are insufficient to capture this size effect,
so various advanced strain gradient plasticity models have been developed in the last decade (Aifantis,
1984, 1987; Fleck and Hutchinson, 1993, 1997, 2001; Gao et al., 1999; Huang et al., 2000; Gurtin, 2000;
Acharya and Bassani, 2000; Bassani, 2001; Gudmundson, 2004; Han et al., 2005a,b) and have been actively
devoted to study the size-dependent response of the particle-reinforced composite (Shu and Barlow, 2000;
Huang et al., 2000; Xue et al., 2002; Niordson and Tvergaard, 2001, 2002; Niordson, 2003; Bittencourt
et al., 2003). Existing works on the particle size effect commonly considered the particles as perfect sphere
or cylinder. However, in the engineering materials, the spheroidal particles are more ubiquitous, which
bring more significant influences to the size effects due to significant strain gradients near high curvature
surface of non-spherical particles (Huang and Li, 2005). In our pervious work, the particle was regarded
as to be prolate. In fact, the void nucleation mechanism for the oblate spheriodal particles is different from
that for the prolate ones. In addition, our early work only considered the displacement continuum condi-
tion but ignored the high-order traction equilibrium problem at the matrix/particle interface. To overcome
these limitations, this work studies the size-dependent stress concentrations induced by the oblate spheroi-
dal particle, and the interface energy concept is especially introduced to settle the high-order traction equi-
librium problem. For simplicity, only the remote proportional and monotonic axisymmetric tension
loading is considered, and the analysis is restricted to small strain cases.
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2. Mechanical model and basic relations

2.1. Infinite representative model

To investigate the coupled effects of particle size and particle shape, an aggregate including infinite size-
dependent non-linear matrix and an isolated oblate spheroidal elastic particle is considered as shown in
Fig. 1. In the following text, the scripts m and p denote the matrix and the particle, respectively.

For convenience, both the Cartesian coordinate system (x1,x2,x3) and the oblate spheroidal coordinates sys-
tem (f,h,u) are adopted to accommodate the geometry of the oblate particle (see Fig. 1 and Appendix A-1).

In above two coordinate frames, the interface between the oblate spheroidal particle and the matrix
material can be described by
Fig. 1
R11 = R
x1

b

� �2

þ x2

b

� �2

þ x3

a

� �2

¼ 1 or f ¼ b ¼ tanh�1l ¼ tanh�1 a
b
; ð1Þ
where the x3-axis (i.e. the main tension axis) is aligned with the symmetry axis of the oblate spheroidal par-
ticle, a and b denote the lengths of semi-minor and semi-major axis of the particle. Obviously, the morphol-

ogy of the particle can be fully described by half of the foci a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � a2
p

and the aspect ratio l = a/b.
For the sake of simplicity, our attention is restricted to the small deformation case. Since the remote

strain gradient g1ijk is small enough at the infinite scale that the remote high-order stresses s1ijk can be ne-
glected (Fleck and Hutchinson, 1993), only the axisymmetric proportional tension loadings, i.e. the non-
zero remote uniform macroscopic stresses R11 = R22 = Q and R33 = P (P>Q P 0), are applied as indicated
in Fig. 1. These stipulations allow a generalization of Illuyshin�s theorem to be enforced: proportional load-
ing occurs at each material point within the solid and results of the deformation theory exactly coincide
with the predictions of the flow theory (Fleck and Hutchinson, 1993).

2.2. Constitutive relation

Here, the multi-parameter phenomenological SG deformation theory (Fleck and Hutchinson, 1997) is
adopted to model the isotropic and plastic incompressible matrix since it has an advantage for obtaining
closed-form solutions to some basic problems (Fleck and Hutchinson, 2001). In the SG theory, the strain
gradient tensor gijk = uk,ij can be decomposed as follows (Smyshlyaev and Fleck, 1996):
. Schematic showing an infinite solid containing an oblate particle, where the axisymmetric remote stress are applied as

22 = Q and R33 = P with P P Q P 0.
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gijk ¼ gH
ijk þ g0ð1Þijk þ g0ð2Þijk þ g0ð3Þijk ; ð2Þ
where gH
ijk is the hydrostatic part and g0ð1Þijk ; g

0ð2Þ
ijk ; g

0ð3Þ
ijk

n o
are three orthogonal deviatoric parts.

Above decomposition provides three independent strain gradient invariants g0ðmÞijk g0ðmÞijk ðm ¼ 1; 2; 3Þ, which
can be used to generalize the Von Mises effective strain ne and the effective stress re to include the contri-
butions of the high-order terms as
n2
e ¼

2

3
e0ije
0
ij þ l2

1g
0ð1Þ
ijk g0ð1Þijk þ l2

2g
0ð2Þ
ijk g0ð2Þijk þ l2

3g
0ð3Þ
ijk g0ð3Þijk ; ð3aÞ

r2
e ¼

3

2
r0ijr

0
ij þ l�2

1 s0ð1Þijk s0ð1Þijk þ l�2
2 s0ð2Þijk s0ð2Þijk þ l�2

3 s0ð3Þijk s0ð3Þijk ; ð3bÞ
where s0ðnÞijk are work conjugated to the deviatoric strain gradient tensor g0ðnÞijk ; l1, l2 and l3 are three charac-
teristic material lengths which related to the intrinsic material length l via (Begley and Hutchinson, 1998)
l1 ¼
1

j
l; l2 ¼

1

2
l; l3 ¼

ffiffiffiffiffi
5

24

r
l. ð4Þ
Since l � 5 lm and l1 � 0.25–1 lm for most metallic materials (Hutchinson, 2000), we typically set j to 8
here.

To consider the elastic compressibility of matrix material, an elastic volume strain energy density wm
V ðeV Þ

is appended to the strain energy density wm by Hwang and Huang (2002) as
wmðe; gÞ ¼ wm
V ðeV Þ þ wmðneÞ. ð5Þ
The part of wm(ne) is associated with the generalized effective strain ne, which can be assumed as follows:
wmðneÞ ¼
n

nþ 1
r0e0

ne

e0

� �nþ1
n

; ð6Þ
where n is the power hardening exponent and r0 the reference flow stress corresponding to the reference
strain e0.

Assuming that the matrix volume deformation is linearly elastic and the hydrostatic strain gradient gH
ijk is

so small that has no contribution to the strain energy density, the elastic volume strain energy density func-
tion can be expressed as
wm
V ðeV Þ ¼

1

2
Kme2

V eV ¼ tr e ¼ eii; ð7Þ
where Km ¼ Em

3ð1� 2mmÞ, Em the Young�s modulus and mm the Poisson�s ratio.

Considering rij and s0ijk are work conjugated to eij and g0ijk, respectively, rij and s0ijk can be obtained by
rij ¼
owm

oeij
¼ KmeV dij þ

2

3

re

ne
e0ij;

s0ijkðnÞ ¼
owm

og0ijk

¼ re

ne
l2

ng
0ðnÞ
ijk ðthe index n no sumÞ.

8>>><
>>>:

ð8Þ
On the other hand, since the particle can be assumed as an isotropic elastic solid with Young�s modulus Ep

and Poisson�s ratio mp, its stress–strain relation can be simply described as
rp
ij ¼ kpep

kkdij þ 2Gpep
ij; ð9Þ
where kp ¼ Epmp

2ð1þ mpÞð1� 2mpÞ and Gp ¼ Ep

2ð1þ vpÞ.
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2.3. Interface energy and boundary conditions

Since the second-phase particle is elastic, the particle/matrix interface should be double-stress traction
free. However, in the SG matrix side, the double-stress traction associated with the high-order stress sijk

is inevitably developed. How to settle this contradiction is mechanically important. Physically, due to
the obstruction of the elastic particle, enormous dislocations developed in the matrix material can not pass
the interface and inevitably accumulated at the matrix/particle interface. Hence, a dislocation layer sur-
rounding the particle comes into being. This is likely to influence the energetic state near the interface
(Cermelli and Gurtin, 2002; Gudmundson, 2004; Aifantis and Willis, 2005). Referring to Gudmundson�s
work (2004), an additional contribution associated with the interface energy to the internal virtual work
of the SG matrix is appended as
dwin ¼
Z

V m

rijdeij þ sijkdgijk

� �
dV þ

Z
Sp

RI
kjduk;j dS; ð10Þ
where Sp denotes the surface of the particle and RI
kj is work conjugate to the displacement gradient uk,j at the

interface of the matrix side.
As mentioned above, the remote high-order stress s1ijk is small enough to be neglected, and the matrix/

elastic particle interface is double-stress traction free. Hence, the external virtual work of the matrix mate-
rial can be expressed as
dwex ¼
Z

Sp

T p
kduk dS þ

Z
Sr

T r
kduk dS; ð11Þ
where T p
k and T r

k are the surface tractions at the particle interface Sp and at the infinite solid surface Sr,
respectively.

Applying the divergence theorem to (10) and noting the equality between the internal virtual work dwin

and the external virtual work dwex, we can obtain the equilibrium equation:
rik;i � sijk;ij ¼ 0 ð12Þ

and the boundary conditions:
njRI
kj þ ninjsijk ¼ 0;

T p
k ¼ niðrik � sijk;jÞ � Djðnisijk þ RI

kjÞ;

(
at Sp ð13aÞ
and
T r
k ¼ niRik at Sr; ð13bÞ
where Dj = (djk�njnk)ok is the surface-gradient operator.
Obviously, the double-stress traction rk = ninjsijk at the interface of the matrix side is automatically bal-

anced with njRI
jk induced by the interfacial energy.

Referring to Gudmundson�s work (2004), RI
kj may be directly determined from the interfacial energy den-

sity wI via
RI
kj ¼

owI

ouk;j
. ð14Þ
Here, a simple isotropic wI for the elastic/plastic interface is suggested as
wIðuk;jÞ ¼ GmlIuk;juk;j and then RI
kj ¼

owI

ouk;j
¼ 2GmlIuk;j; ð15Þ
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where Gm denotes the shear modulus of the matrix and lI is the characteristic length associated with the
interface energy, which can be regarded as the effective thickness of the geometrically necessary dislocation
layer surrounding the particle. If the width of a single dislocation is about 0.25 nm, the thickness of the
geometrically necessary dislocation layer containing averagely 100–400 dislocations can be taken as
0.025–0.1 lm (Nicola et al., 2003). As a qualitative analysis but no loss of generality, here the interfacial
characteristic length lI is tentatively set as lI = 0.05 lm.

Besides, the displacement field should be continuous across the particle/matrix interface, so
up ¼ um on f ¼ b; ð16Þ

where up and um denote the displacement fields within the particle and in the matrix, respectively.

2.4. Stress concentration factors

To investigate the void nucleation mechanism, three kinds of stress concentration factors (SCF), i.e. the
interfacial normal SCF Kn

I , the interfacial shear stress SCF Ks
I and the particle opening SCFKp are consid-

ered. Obviously, Kn
I and Ks

I are associated with the interface debonding mechanism; while Kp is related to
the particle breakage mechanism.

As a measurement of the normal stress at the particle–matrix interface, Kn
I is introduced as
Kn
I ¼ r11=P at f ¼ b ð17Þ
and the interfacial shear SCF Ks
I is similarly defined as
Ks
I ¼ jrfhj=P at f ¼ b; ð18Þ
where r11 and rfh are the interfacial normal stress and shear stress, respectively, which can be obtained from
the solution for the stress field within the particle readily.

The particle opening SCF Kp is given by
Kp ¼ rhh=P at h ¼ p=2; f 6 b ð19Þ

in which rhh is the opening stress on the particle equator plane.

2.5. Dimensionless characteristic length ratio

To describe the size effect on these SCFs, the radius of an ‘‘equivalent sphere particle’’ with the same
volume as the oblate spheroidal particle is defined as the ‘‘particle equivalent radius’’ r ¼

ffiffiffiffiffiffiffi
ab23
p

, and then
two characteristic length ratios {kp,kI} can be introduced as
kp ¼ l=r ¼ l=
ffiffiffiffiffiffiffi
ab23

p
ð20Þ
and
kI ¼ lI=
ffiffiffiffiffiffiffi
ab23

p
. ð21Þ
Obviously, r characterizes the geometrical scale of the particle; while l and lI denote the physical intrinsic
lengths associated with the matrix material and the interface energy, respectively.
3. Basic fields and numerical procedure

Following Lee and Mear (1999), a Ritz procedure based upon Hill�s (1956) minimum principle (Budian-
sky et al., 1982) is here employed. As well known, rational representations for the displacement fields within
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the interior particle and the exterior matrix are crucial for success of this method. Therefore, the axisym-
metric displacement representations for the elastic problem (i.e. elastic particle embedded in the elastic ma-
trix) are first developed (see Appendix A), and then they are used as a reference to construct the trail
displacement fields for the elastic particle–plastic matrix problems.

3.1. Trial displacement field

For the present model, the representation developed in the appendix (A.8) can be used to describe the
displacement field within the elastic particle up:
up
g ¼

a2

h

X
n¼1;3;5;...

inþ1f½H nP 1
nþ1ði sinh fÞ þ ðnþ 1Þðnþ cpÞInP 1

n�1ði sinh fÞ�P nþ1ðcos hÞ

þ nðnþ 1� cpÞInP 1
nþ1ði sinh fÞP n�1ðcos hÞg;

up
h ¼

a2

h

X
n¼1;3;5;...

inþ1f½H nP nþ1ði sinh fÞ þ nðnþ 1� cpÞInP n�1ði sinh fÞ�P 1
nþ1ðcos hÞ

þ ðnþ 1Þðnþ cpÞInP nþ1ði sinh fÞP 1
n�1ðcos hÞg;

8>>>>>>>>>><
>>>>>>>>>>:

ð22Þ
where cp = 4(1�mp), h ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh2f� sin2h

p
and {Hn, In} are real constants. It can be verified easily that this

displacement field has proper symmetry with respect to the median plane h = p/2.
Following Budiansky et al. (1982) and Lee and Mear (1999), the local displacement and strain fields in

the plastic matrix can be constructed as
u ¼ U0 þ ~u and e ¼ E0 þ ~e; ð23Þ

where U0 and E0 are the linear displacement field and the uniform strain field associated with the remote
stress Rij in the absence of particle. Correspondingly, the strain gradient g can also be written as
g ¼ g0 þ ~g. ð24Þ

Similarly, g0 denotes the strain gradient in the absence of particle. Since E0 is uniform, g0 naturally equals
to zero. ~e and ~g are the reduced strain and strain gradient fields associated with the reduced displacement ~u,
respectively.

For the axisymmetric load considered in Fig. 1, the non-zero physical components of U0 in the oblate
spheroidal coordinate system can be expressed as
U 0
f ¼

a2

3h
P 1

2ðcosh fÞðE0
m þ E0

eP 2ðcos hÞÞ;

U 0
h ¼

a2

3h
P 1

2ðcos hÞ½E0
e � E0

m þ E0
eP 2ðsinh fÞ�;

8>><
>>: ð25Þ
where E0
m ¼ 1�2m

3Em P þ 2Qð Þ is the remote mean strain and E0
e ¼ e0

P�Q
r0

� �n
the remote effective strain.

Referring to the elastic matrix displacement field (A.8), the reduced displacement field in the non-linear
matrix can be constructed in terms of a complete set of orthogonal functions as (Lee and Mear, 1999)
~uf ¼
a2

h

X
k¼0;2;4;...

F kðfÞP kðcos hÞ;

~uh ¼
a2

h

X
k¼2;4;...

GkðfÞP 1
kðcos hÞ

8>>>><
>>>>:

ð26aÞ
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in which the functions Fk and Gk only depend on f:
F kðfÞ ¼
P

m¼0;1;2;...

imþ1AkmQ1
mði sinh fÞ;

GkðfÞ ¼
P

m¼0;1;2;...

imþ1BkmQmði sinh fÞ;

8><
>: ð26bÞ
where Akm and Bkm are unknown real coefficients. Obviously, the trial field (26) also has proper symmetry

with respect to the median plane h ¼ p
2

.

Considering the matrix/particle interface displacement continuous condition (16), the correlation be-
tween the constants {Hj, Ij} associated with the particle displacement field and the real coefficients
{Akm,Bkm} involved in the reduced matrix displacement field is established (see Appendix B). Hence, only
unknown parameters {Akm,Bkm} are independent.

3.2. Minimum functional and numerical method

According to the generalized Hill�s minimums principle (1956), the actual displacement field should
minimize the functional F(up,u):
F ðup; uÞ ¼ F p þ F m þ F I ; ð27Þ

where {Fp,Fm} are the strain energies of the elastic particle and the non-linear matrix, respectively, and FI is
the additional interface energy for the particle/matrix interface, i.e.
F p ¼
R

V p
wpðepÞdV ¼

R
V p

kp

2
ep

V ep
V þ Gpep : ep

	 

dV ;

F m ¼
R

V m
wmðe; gÞ � wmðE0; 0Þ � R : ~e
� �

dV þ
R

Sp
~u � R � n dS;

F I ¼
R

Sp
wIðui;jÞdS ¼

R
Sp

GmlIui;jui;j dS;

8>>>><
>>>>:

ð28Þ
where Vm and Vp denote the volume occupied by the matrix and by the particle, respectively.
Once the functional (27) has been minimized with respect to the coefficients {Akm,Bkm} by a Ritz pro-

cedure, the deformation fields within the particle and the matrix are synchronously established.
Similar to Lee and Mear�s numerical strategy (1999), the double series of the trial field (26) are truncated

and thus only finite terms corresponding to k = 0,2,4, . . . , 2K and m = 1,2, . . . ,M remain. When this is
done, the particle displacement field has simultaneously been truncated and only the terms associated with
n = 1,3,5, . . . , 2K � 1 is left. Obviously, the accuracy of this strategy lies mainly on the parameters K and M

selected. To ensure the precision of the results, K = M = 10 are chosen here and a descent Newton–Raph-
son procedure is adopted to avoid numerical divergence. Fig. 2 compares the present results with the FE
results by MSC-MARC� for the classical scale-independent cases. It is clear at a glance that these results
have excellent agreements. This validates powerfully the representative displacement fields within the par-
ticle and in the matrix to be rational.
4. Results for the stress concentration factors

The present paper aims at studying the combined effects of particle shape and particle size on the mes-

oscopic stress field, so a wide range of the particle aspect ratios l ¼ 0.999;
1

2
;
2

5
;
1

3
;
1

4


 �
, two particle scale

length ratios kp = {0, 1} and two corresponding interfacial characteristic length ratios kI = {0,0.01} are
considered for several stress triaxialities Rr = {1/3, 1,2,3}. Although more fruits can also be achieved by



0

0.4

0.8

1.2

0 30 60 90

FEM result for  Rσ =3
FEM result for  Rσ=1
present reulst for shear stress
present result for normal stress

at interface ζ = β

E0=0.05  λp=λI=0 μ=1/2

θº

K
In
 o

r  
 K

Is

e

Fig. 2. The present size-independent results of the normal SCF Kn
I and shear SCF Ks

I along the matrix–particle interface in comparison
with the FEM results solved by MSC-MARC� for stress triaxialities Rr = {1,3}.

M. Huang, Z. Li / International Journal of Solids and Structures 43 (2006) 4097–4115 4105
the present method, only the results for Poisson ratios mm = m p = 0.33 and the Young�s modulus ratios
Ep/E m = 2 are presented here for the paper length limitation.

4.1. Influences of the interfacial energy on SCFs

To model the geometrically necessary dislocation accumulation at the interface, an interfacial energy is
introduced in the present paper. As considered in (15), the interfacial energy is associated with the effective
thickness lI of the geometrically necessary dislocation layer surrounding the particle. Fig. 3 compares the
influences of the dimensionless length ratio kI = lI/r on SCFs both at the interface and within the particle.
For comparison, the results for the prolate spheroidal particle are also given together. It is shown in Fig. 3a
that the interface energy only has very weak influence on the interfacial normal SCF Kn

I except for that near
the pole (h!0�) of the prolate spheroidal particle, which is decreased by the interface energy to a certain
extent. However, Fig. 3b indicates that the interfacial shear SCF Ks

I is clearly elevated by the interface
energy both for the prolate particle and for the oblate particle. Moreover, Fig. 3c demonstrates that the
maximum particle opening SCF Ko max

p is also enhanced by the interface energy especially at higher remote
strain level E0

e . In a word, for the oblate particles, the interface energy has weaker effects on the interfacial
SCFs (Kn

I and Ks
I ) but markedly elevates the opening SCF within the particle; while for the prolate particles,

the interface energy decreases the interfacial normal SCF to a certain extent but elevates the interfacial
shear and the particle opening SCFs evidently.

4.2. Interfacial stress concentration factors

The normal stress at the particle–matrix interface plays a very important role in interface debonding.
Fig. 4 displays the distributions of normal SCF Kn

I along the interface, where the physical angle h is defined

as h ¼ arctanðl
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 þ x2
2

p
=x3Þ

���
f¼b

with h = 0 and h ¼ p
2

corresponding to the pole and equator of the particle

(see Fig. 1), respectively. It can be seen that, for the classical size-independent cases (i.e. kI = kp = 0), the
location of the maximum interfacial normal SCF Kn max

I always deviates slightly from the pole and is within
the range 0 < h < 30�. However, with decreasing of the particle size, the magnitudes and distributions of Kn

I
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at the interface are dramatically modified. The interfacial normal SCF Kn
I around the poles is significantly

elevated but that near the equator is heavily depressed (even to values less than zero). As a result, the max-
imum of SCF Kn max

I is simultaneously enhanced and the location of Kn max
I shifts to a place with larger angle

h. This means that the particle size effect is likely to not only advance the void nucleation initiation but also
change the location of void nucleation. This finding is qualitatively consistent with Niordson�s (2003) size-
dependent FE results for the whisker-reinforced composite, where they reported that the normal stresses
along the fiber top close to the fiber corner are significantly enhanced by the strain gradient effects.

To depict more clearly the size effect on the interfacial normal stress concentration factor, normalizing

the scale dependent Kn max
I

� �kp¼1;kI¼0.01
by the scale independent Kn max

I

� �kp¼kI¼0
renders a new parameter as
Bn
I ¼ Kn max

I

� �kp¼1;kI¼0.01
= Kn max

I

� �kp¼kI¼0
. ð29Þ
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Fig. 5 illustrates Bn
I as a function of the remote effective strain E0

e for different remote stress triaxialities
Rr and for various aspect ratios l. It is clear at a glance from Fig. 5a that Bn

I increases monotonically with
increasing the remote strain E0

e and with decreasing the stress triaxiality Rr. This indicates that an increase
in remote strain or a decrease in remote stress triaxiality elevates greatly the particle size effect on Kn max

I . In
addition, Fig. 5b further shows that the elevation of Bn

I becomes more and more considerable with the par-
ticle shape ratio decreasing. In other words, the more oblate the particle is, the more significant the size
effect on Kn max

I is. This is easy to explain because larger interface curvature for more oblate particles can
elevate strain gradient in the vicinity of particle equator and then aggravate the size effect.

Slipping and debonding of the particle/matrix interface also depend closely upon the shear SCF at the
interface. Fig. 6 presents distributions of the interfacial shear SCF Ks

I along the interface for various particle
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aspect ratios. For the size-independent cases (i.e. kI = kp = 0), Fig. 6a demonstrates clearly that the shear
SCFs Ks

I are much less than 1 for both the spherical particle (treated as l = 0.999 approximately) and for
the oblate ones l < 1. Hence, for the size-independent cases, the interface slip is relatively more difficult to
occur. However, when the particle size falls into the micron or submicron range, the size effect arises as
shown in Fig. 6b. Compared with the size-independent Ks

I at the interface, the size-dependent Ks
I is greatly

elevated. This influence seems more and more significant with the particle aspect ratio decreasing. It sug-
gests that the interface slip is much easier to initiate for the micron sized oblate particles.

To more closely examine the size effect on the interfacial shear SCF, normalizing the scale-dependent
Ks max

I

� �kp¼1;kI¼0.01
by the scale-independent Ks max

I

� �kp¼kI¼0
can render a new parameter Bs

I . Similar with
the ratio Bn

I , Bs
I increases gradually with increasing the remote effective strain E0

e and with decreasing the
remote stress triaxiality Rr or particle aspect ratio l. Since the basic trends for Bn

I and Bs
I are similarly,

the ratio Bn
I is not given schematically here.

4.3. Particle opening stress concentration factor Ko
p

Another possible void nucleation mechanism is the particle breakage, which is mainly governed by the
opening stress rhh on the particle equator plane (h = 90� and 0 6 f 6 b). Our results suggest that the open-
ing stress on the particle equator plane is relatively uniform, so only the maximum opening SCF Ko max

p

within the particle is schematically analyzed. Fig. 7 first plots size-independent variations of

Ko max
p

� �kp¼kI¼0

as the function of the remote effective strain for various particle shapes. From this figure,

two interesting conclusions can be reached. One is that Ko max
p continually decreases with decreasing the par-

ticle aspect ratio. In other words, the opening SCF within the oblate particle is lower than that within the
spherical particle for the same remote load condition. Another is that Ko max

p seems not very sensitive to the
remote effective strain.

Fig. 8 shows variations of Bo
p ¼ Ko max

p

� �kp¼1;kI¼0.01

Ko max
p

� �kp¼kI¼0
�

with the remote effective strain, which

can illustrate the size effect on Ko max
p clearly. It can be seen that Bo

p is always larger than 1. This means that
the size effect elevates the maximum opening SCF Ko max

p on the particle equator plane. Further, this eleva-
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tion becomes more and more significant with increasing the remote strain (see Fig. 8a) and decreasing the
particle aspect ratio (see Fig. 8a) or the remote stress triaxiality (see Fig. 8b).

4.4. Ratio of particle opening SCF to interfacial normal SCF

As well known, the maximums of particle opening SCF Ko max
p and interfacial normal SCF Kn max

I play
important roles in the particle cracking and interface debonding void nucleation mechanisms, respectively.
Fig. 9 displays influences of the size effect and the shape effect on the variations of the ratio
Bpi ¼ Ko max

p =Kn max
I with the remote effective strains E0

e . It can be found from this figure that, for the size-
independent case (i.e. k = ks = 0), Bpi are very close to 1.0 or even less than 1.0. This is basically consistent
with some experiment observations that the voids are apt to initiate by particle/matrix interface debonding
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for the oblate particle, especially when the particle aspect ratio is small. However, with the particle size
decreasing and falling into the micron or even submicron size (e.g. kp = 1, kI = 0.01), Bpi becomes much
larger than 1.0. This is completely different from the above size-independent cases. It means that if the crit-
ical strengths of the interfacial and particle are size-independent, the probability of the particle breakage
nucleation mechanism would greatly increase for the micron sized oblate particle, especially at larger
remote strain E0

e . Of course, the strength of the particle is generally much stronger than that of the ma-
trix/particle interface, so the void nucleation mechanism maybe still is governed by the interface separation.
Further experimental studies on the critical particle and interface strengths in the micron or submicron
range are very necessary to predict rationally the void nucleation mechanisms.
5. Summary

The main purpose of this paper is to study the coupled effects of particle size and shape on the stress
concentrations and void nucleation mechanism. To achieve this end, an infinite power law SG solid with
an oblate spheroidal particle under axis-symmetrical proportional and monotonic tension loading has been
theoretically analyzed. Based on the three-function method in the classic elasticity, the deformation fields
within the elastic oblate particle and in the non-linear matrix are given. To equilibrate the double-traction
at the particle/matrix interface, an interface energy concept is especially introduced. By means of a Ritz
method, the normal SCF Kn

I , the shear SCF Ks
I at the matrix–particle interface and the opening SCF Kp

within the particle are numerically solved. Some interesting results are obtained as follows:

• The size effect significantly elevates the interfacial normal SCF Kn
I around the particle pole (0� 6 h 6 60�)

as well as the maximum Kn max
I . With the particle aspect ratio decreasing, the location of Kn max

I shifts to
the location with larger angle h. Hence, the size effect is likely to advance the interface separation and
change the location of void nucleation.

• The size-independent shear SCF Ks
I at the interface of the oblate particle is very small and the maximum

Ks max
I is usually less than 1. However, when the particle size effect comes into effect, the maximum Ks max

I

is significantly enhanced to 2–3. This means that the void nucleation at the micron sized oblate particles
is likely to be triggered by the particle/matrix interface slip.
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• The opening SCF within the particle is dramatically increased by the size effect and this elevation is much
more significant than that of the interfacial normal SCF. Although the probability of particle breakage is
likely to increase, whether particle cracking or interface debonding is the eventual void nucleation mech-
anism mainly rests with the critical strengths of the tiny particle and interface.

• The increases in the remote strain level and decreases in the remote stress triaxiality or in the particle
aspect ratio can aggravate the size effects on the SCFs. This is not difficult to understand because the
higher strain level and the larger interface curvature near particle equator can induce severer strain
gradient.

• For the oblate particle, the influences of the interface energy on the interfacial SCFs especially on the
normal interfacial SCF are very weak but much stronger on the opening SCF within in the particle; while
for the prolate particles, the interfacial energy decreases the interfacial normal SCF to a certain extent
but elevates the interfacial shear and particle opening SCFs.

It is worthy to note that the isotropic interfacial energy density is tentatively suggested as wI = GmlIui,jui,j

for simplicity. Further studies on the form of the interfacial energy and the interfacial characteristic length
lI are also very valuable.
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Appendix A

Referring to Lee and Mear (1999), the correlation between the Cartesian system (x1,x2,x3) and the ob-
late spheroidal coordinates (f,h,w) is
x1 ¼ a cosh f sin h cos w;

x2 ¼ a cosh f sin h sin w;

x3 ¼ a sinh f cos h.

8>><
>>: ðA:1Þ
Let {e1,e2,e3} represent the unit base vectors for the Cartesian coordinate system and {ef,eh,ew} for the
oblate spheroidal coordinate system. According to the Boussinesq�s relation (i.e. the three-function method,
Gurtin, 1984), the axisymmetric displacement field within the elastic particle and in the elastic matrix can be
given by
u ¼ cWe3 �rðx3Wþ UÞ; ðA:2Þ

where e3 ¼ a

h ðcosh f cos hef � sinh f sin hehÞ, h ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh2f� sin2h

p
, c = 4(1�m) and m is Poisson�s ratio. The

functions W and U, which only depend upon {f,h}, are harmonic, so
r2W ¼ r2U ¼ 0; ðA:3Þ

where $2 and $ are the Laplacian and the gradient operator, respectively. In the present oblate spheroidal
coordinate system, they can be written as
r2 ¼ 1

h
o2

of2
þ tanh f

o

of
þ o2

oh2
þ cot h

o

oh

� �
ðA:4Þ
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and
r ¼ 1

h
o

of
ef þ

o

oh
eh

� �
. ðA:5Þ
It is easy to validate that following separable variable terms can meet automatically the oblate-spheroidal
harmonic condition (A.3):
P n i sinh fð ÞP n cos hð Þ and Qnði sinh fÞP nðcos hÞ; ðA:6Þ

where i ¼

ffiffiffiffiffiffiffi
�1
p

, Pn and Qn are the Legendre polynomials and Legendre functions of the second kind,
respectively. Therefore complete separable variable solutions for {W,U} can be constructed as
W ¼ �
P

n¼0;1;2

imað2nþ 1ÞEnRnði sinh fÞP nðcos hÞ;

U ¼ �
P

n¼�1;0;1

im�1a2Gnþ1Rnþ1ði sinh fÞP nþ1ðcos hÞ;

8>><
>>: ðA:7Þ
where En and Gn are free real constants,
Rn ¼
P n i sinh fð Þ for the inclusion;

Qn i sinh fð Þ for the matrix



and m ¼

nþ 2 for the inclusion;

nþ 1 for the matrix.




Substituting (A.7) into (A.2), removing the redundant terms and noting that the displacement field is
symmetry with respect to the median plane h ¼ p

2
, the elastic displacement field can be written as
uf ¼ �
ia2

h
H�1R1

0 þ
a2

h

X
n¼1;3;5;...

im�1f½HnR1
nþ1 þ ðnþ 1Þðnþ cÞInR1

n�1�P nþ1ðcos hÞ

þ nðnþ 1� cÞInR1
nþ1P n�1ðcos hÞg;

uh ¼
a2

h

X
n¼1;3;5;...

im�1f½H nRnþ1 þ nðnþ 1� cÞInRn�1�P nþ1ðcos hÞ

þ ðnþ 1Þðnþ cÞInRnþ1P n�1ðcos hÞg;

8>>>>>>>>>><
>>>>>>>>>>:

ðA:8Þ
where P 1
n and are the one order associated Legendre functions of the first kind and the second kind, respec-

tively. {Hn, In} are real constants and R1
n is function of isinhf, which can be expressed as
H n ¼ Gnþ1 þ
ðnþ 1Þðnþ 1� cÞ

2nþ 1
En;

In ¼
En

2nþ 1

8>><
>>: and R1

n ¼
P 1

n i sinh fð Þ for the inclusion;

Q1
n i sinh fð Þ for the matrix.

(
ðA:9Þ
Appendix B

Following Lee and Mear (1999) to insure the displacement field is continuous across the matrix–particle
interface, the displacement fields in the matrix and within the particle must satisfy
up ¼ U0 þ ~u on f ¼ b. ðB:1Þ

Clearly, this equation establishes the correlations between the constants {Hj, Ij} associated with the particle
displacement field and the real coefficients involved in the trial reduced matrix displacement field. At the
�f-direction�, the constraint conditions (B.1) can be expressed as
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i2ð2� cpÞI1P 1
2 ¼

E0
m

3
P 1

2ðcoshbÞ þ F 0ðbÞ ¼A0;

i4 3 4� cpð ÞI3½ � þ i2Hn�1P 1
n ¼

E0
e

3
P 1

2ðcoshbÞ þ F 2ðbÞ ¼A2;

ik½Hk�1P 1
k þ kðk� 1þ cpÞIk�1P 1

k�2� þ ikþ2½ðkþ 1Þðkþ 2� cpÞIkþ1P 1
kþ2� ¼ F kðbÞ ¼Ak k ¼ 4;6;8; . . .

8>>>>><
>>>>>:

ðB:2Þ

At the �h-direction�, the constraint conditions (B.1) can be written as
i2 H 1P 2þð2� cpÞI1½ � þ i4 4ð3þ cpÞI3P 4½ � ¼ E0
e �E0

m

3
þE0

eP 2ðsinhbÞ
3

þG2ðbÞ ¼B2;

in Hk�1P k þðk� 1Þðk� cpÞIk�1P k�2½ � þ ikþ2 ðkþ 2Þðkþ 1þ cpÞIkþ1P kþ2½ � ¼GkðbÞ ¼Bk k ¼ 4;6;8; . . . ;

8<
:

ðB:3Þ
where the arguments of the functions Pk and are all isinh b, the new parameters Ak and Bk are the linear
combinations of Akm and Bkm, respectively.

By solving the equation groups (B.2) and (B.3), the constants {Hk, Ik} can be readily expressed in terms
of Ak;Bkf g (i.e. in terms of{Akm,Bkm}):
I1 ¼
a0

i2ð2� cpÞP 1
2

;

Ikþ1 ¼
1

Xkþ1

ikP 1
kBk � ikP kAk � Xk�1Ik�1

� �
;

H k�1 ¼
ikþ2

Xkþ1

ðk þ 2Þðk þ 1þ cpÞP kþ2Ak½

�ðnþ 1Þðnþ 2� cpÞP 1
kþ2Bk

�
þ Kk

Xkþ1
Ik�1;

8>>>>>>>>>><
>>>>>>>>>>:

k ¼ 2; 4; . . . ; ðB:4Þ
where
Xk ¼ ik ðk þ 2Þðk þ 1þ cpÞP 1
k�1P kþ1 � kðk þ 1� cpÞP k�1P 1

kþ1

� �
;

Kk ¼ i2kþ2 ðk � 1Þðk � cpÞðk þ 1Þðk þ 2� cpÞP k�2P 1
kþ2

�
�kðk þ 2Þðk þ 1þ cpÞðk � 1þ cpÞP kþ2P 1

k�2

�
.

8><
>: ðB:5Þ
Apparently, the independent unknown parameters in the displacement fields within the particle and in
the matrix are {Akm,Bkm}.
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